Taq DNA Polymerase (Mg²⁺ Plus Buffer)

ABclonal

WEB: www.abclonal.com

Catalog: RK20600

Size: 1,000 U / 5,000 U / 10,000 U

Concentration: 5,000 U/ml

Components:

Taq DNA Polymerase (5,000 U/ml)RM2031010X PCR Reaction Buffer, Mg^{2+} plusRM20101

Product Description

Taq DNA Polymerase is a thermostable DNA polymerase that possesses a 5' → 3' polymerase activity and a 5' flap endonuclease activity. Taq DNA Polymerase was isolated from a recombinant source and offers robust and reliable reactions. It tolerates a wide range of templates and incorporates dUTP, dITP and fluorescently-labeled nucleotides.

Product Source:

An *E.coli* strain that carries the *Taq* DNA Polymerase gene from *Thermus aquaticus* YT-1.

Unit Definition:

One unit is defined as the amount of enzyme that will incorporate 10 nmol of dNTPs into acid-insoluble material in 30 minutes at 75 \odot .

Reaction Conditions:

1X PCR Reaction Buffer, Mg2+ plus

1X PCR Reaction Buffer, Mg²⁺ plus:

20 mM Tris-HCl, 10 mM (NH₄)₂SO₄, 10 mM KCl, 2 mM MgSO₄, 0.1% Triton X-100, pH 8.8 @ 25 °C

Storage Temperature: -20 °C

Order: order@abclonal.com
Tech: support@abclonal.com

Storage Conditions:

10 mM Tris-HCl, 100 mM KCl, 1 mM DTT, 0.1 mM EDTA, 0.5% Tween 20, 0.5% NP-40, 50% Glycerol, pH 7.4 @ 25 $^{\circ}$ C

Molecular Weight: Theoretical 94000 daltons

Heat Inactivation: No

5' - 3' Exonuclease: Yes

3' - 5' Exonuclease: No

Strand Displacement: +

Resulting Ends: Single-base 3 'Overhangs

Error Rate: ~ 285x10⁻⁶ bases

Instructions

Reaction setup:

We recommend assembling all reaction components on ice and quickly transferring the reactions to a thermocycler preheated to the denaturation temperature (98 $^{\circ}$ C).

Take 25/50 µl system as an example.

Composition	25 μl	50 µl	Final Conc.
ddH ₂ O	to 25 μl	to 50 μl	
10×PCR Buffer	2.5 μl	5 µl	1×(Final 2 mM Mg ²⁺)
10 mM dNTP	0.5 μl	1 μl	200 μΜ
Primer F (10µM)	0.5 μl	1 μl	0.2μΜ (0.05~1 μΜ)
Primer R (10μM)	0.5 μl	1 μl	0.2μΜ (0.05~1 μΜ)
Template DNA	Variable	Variable	<1 µg/50 µl
Taq DNA	0.125 μl	0.25 μl	1.25 U/50 µl
Polymerase			(0.25–2.5 U/50 µl)

Notes: Gently mix the reaction. Collect all liquid to the bottom of the tube by a quick spin if necessary. Overlay the sample with mineral oil if using a PCR machine without a heated lid.

Incubated in a thermocycler as the below program:

Temperature	Time	Cycles	
95 ℃	30s	1	
95 ℃	15-30s		
45-68 ℃	15-60s	30	
68 ℃	1kb/min		
68 ℃	5min	1	
4-10 ℃	∞		

General Guidelines:

1. Template:

Use of high quality, purified DNA templates greatly enhances the success of PCR. Recommended amounts of DNA template for a $50 \, \mu$ l reaction are as follows:

DNA	Amount
Genomic	1 ng−1 μg
Plasmid or viral	1 pg-1 ng

2. Primers:

Oligonucleotide primers are generally 20–40 nucleotides in length and ideally have a GC content of 40–60%. Computer programs such as Primer3 can be used to design or analyze primers. The final concentration of each primer in a PCR may be 0.05–1 μM , typically 0.1–0.5 μM .

3. Mg++ and additives:

Mg++ concentration of 1.5–2.0 mM is optimal for most PCR products generated with *Taq* DNA Polymerase. Amplification of some difficult targets, like GC rich sequences, may be improved with additives, such as DMSO or formamide.

4. Deoxynucleotides:

The final concentration of dNTPs is typically 200 μM of each deoxynucleotide.

5. *Taq* DNA Polymerase Concentration:

We generally recommend using Taq DNA Polymerase at a concentration of 25 units/ml (1.25 units/50 μ l reaction). However, the optimal concentration of Taq DNA Polymerase may range from 5–50 units/ml (0.25–2.5 units/50 μ l reaction) in specialized applications.

6. Denaturation:

An initial denaturation of 30 seconds at 95 $^{\circ}$ C is sufficient for most amplicons from pure DNA templates. For difficult templates such

as GC rich sequences, a longer denaturation of 2–4 minutes at 95 $^{\circ}$ C is recommended prior to PCR cycling to fully denature the template. With colony PCR, an initial 5 minutes incubation at 95 $^{\circ}$ C is recommended to lyse cells.

During thermocycling a 15–30 second denaturation at 95 $^{\circ}$ C is recommended.

7. Annealing:

The annealing step is typically 15–60 seconds. Annealing temperature is based on the Tm of the primer pair and is typically 45–68 $^{\circ}$ C. Annealing temperatures can be optimized by doing a temperature gradient PCR starting 5 $^{\circ}$ C below the calculated T_m .

8. Extension:

The recommended extension temperature is $68 \, \mathbb{C}$. Extension times are generally 1 minute per kb. A final extension of 5 minutes at $68 \, \mathbb{C}$ is recommended.

9. Cycle number:

Generally, 25–35 cycles yield sufficient product. Up to 45 cycles may be required to detect low-copy-number targets.

10. 2-step PCR:

When primers with annealing temperatures above 68 °C are used, a 2-step thermocycling protocol is possible.

Thermocycling Conditions for a Routine 2-Step PCR:

Temperature	Time	Cycles
95 ℃	30s	1
95 ℃ 65-68 ℃	15-30s 1kb/min	30
65-68 ℃ 4-10 ℃	5min ∞	1

11. PCR product:

The PCR products generated using *Taq* DNA Polymerase contain dA overhangs at the 3 ´end; therefore the PCR products can be ligated to dT/dU-overhang vectors.